免费发布信息
当前位置:首页 > 行业资讯 > 科学技术 >

42,人类破解宇宙生命终极答案,竟是3个整数立方和

  • 2019-09-09 15:02:16
  • 来源:新浪科技
  • 0
  • 0
  • 添加收藏

  [新智元导读]42,可以写成3个整数的立方和!这是数学界的一大突破,由MIT和布里斯托大学的数学家共同发现,他们以“生命、宇宙以及一切”的网页标题,公布了这一成果。

  人类第一次将42写成了3个整数的立方和!

  昨天,有人在 MIT 数学系的网站上贴出一个等式,网页很简单,但没给出结果:

  (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3

  等于 42!

  在推特上,菲尔兹奖得主高尔斯也转发了这个结果。

  这是一个大新闻,因为至此,下面这句话成为了定理:

  除了 9n±4 型自然数外,所有 100 以内的自然数都能写成三个整数的立方和。

  是的,在此之前,42是100以内最后一个尚未找到立方和的整数解的自然数。现在,这个解也找到了。

  找到这个等式的数学家是来自布里斯托大学的 Andrew Booker 和来自麻省理工学院的Andrew Sutherland。

  Andrew Booker 是布里斯托大学数学教授

Andrew Sutherland是MIT数学系首席研究科学家
Andrew Sutherland是MIT数学系首席研究科学家

  今年3月, Andrew Booker 找到了33的立方和整数解,同样引起数学界轰动。昨天,Andrew Booker穿着印有“42”的T恤接受采访,解释了他们的研究过程。

  在被问到“你们解决这个问题后,有没有兴奋得跳起来”时,Booker说:“我这次倒是没有跳起来,但是你知道,解决一个三、四十年来一直悬而未决的问题,实在是令人很满足!当然,这个论题本身还没有解决,下一个数字是114……”

  有意思的是,两位数学家公布这一结果的网页标题是“生命、宇宙以及一切”(Life, the Universe and Everything)。

MIT的网页截图
MIT的网页截图

  在道格拉斯·亚当斯著名的《银河系漫游指南》系列中,42是“生命、宇宙以及一切的终极答案”。

  茫茫宇宙中,一个 “具有超级智慧的泛维度种族” 对关于生命意义的无休止的争论感到厌烦了,他们决定一劳永逸地解决这个问题。他们建造了宇宙一切空间和时间中第二强大的电脑 “沉思”,向它寻求 “关于生命、宇宙,以及一切的终极答案”。

  整整 750 万年后,“沉思” 给出了答案 —42。

  面对这个玄妙的答案,泛维度种族需要回过头先弄明白生命宇宙以及一切的终极问题,方能理解答案。但 “沉思” 不能胜任此项艰巨的任务,它说:“你们需要一台能够计算出这个终极答案的电脑,这台电脑具有无限和微妙的复杂性,以至于有机生命本身将会成为操作母体的一部分。你们自身也会以一种新的生命形式投入到这台电脑中,去操控为期 1000 万年的程序。我将会为你们设计出这台电脑,并且我已为它取好名字。它将会被称为…… 地球。”

  痴迷、痴狂!人类寻找三立方数和简史

  人类为什么对这样一个等式如此着迷呢?

  这个问题至少可以追溯到 1825 年,数学家想知道,如果给定整数 K,是否存在整数 X、Y、Z,满足:

  X^3 + Y^3 + Z^3 = K。

  数论领域下有一大分支叫“丢番图方程”:

  x^3+y^3+z^3=k 是否存在整数解是丢番图方程中的一个问题。

  丢番图 (Diophantine) 是一位古希腊的大数学家,被认为是第一位懂得使用符号代表数来研究问题的人。

  丢番图和他的墓志铭

  其中丢番图最著名的事迹可能就是他的墓志铭 —— 曾经连续多年出现在各地中小学生的寒假作业扩展训练上:

  坟中安葬着丢番图。

  多么令人惊讶,它忠实地记录了所经历的道路。

  上帝给予的童年占六分之一,

  又过十二分之一,两颊长胡,

  再过七分之一,点燃起结婚的蜡烛。

  五年之后天赐贵子,

  可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。

  悲伤只有用数论的研究去弥补,

  又过四年,他也走完了人生的旅途。

  回到丢番图方程,由于立方数模 9 同余 0、1 或 - 1,三立方数和模 9 不可能同余 4 或 5,因而这是整数解存在的一个必要条件。因此9k+4或9k+5这种形式的整数不能写成三个立方数之和。然而,对于该条件是否同时为充分条件目前仍未有定论。

  1992年,牛津大学的Roger Heath-Brown提出猜想,即其它所有整数都可以用无穷多种不同的方式写成三个立方体的和。在那以后,数学家们似乎已经被Heath-Brown的论点所说服,然而,找到把任何特定的数写成三个立方体之和的方法仍然是一个难题。

  2000年,哈佛大学的Noam Elkies提出了一个实用的算法来寻找这类解。Elkies和其他数学家使用类似的方法,成功地为许多较小的整数找到了立方和的整数解。

  2015年,数学家Tim Browning录制了一段视频,解释了这个问题。在那个时候,只有33、42和74这三个小于100的整数尚未找到解。这段视频让更多的人注意到了这个问题,并带来了一系列的突破。

  Tim Browning的视频让更多数学家关注这个问题

  受到这段视频的启发,几个月后,Sander Huisman找到了74的立方和整数解:

  Tim Browning再次录制了一段关于Huisman解决74的视频。另一位数学家,即布里斯托大学的Andrew Booker看到了这段视频,决定解决这个问题。

  他提出了一种新的算法,这种算法能更有效地找到一个特定数字的解。2019年2月27日,Booker公布了33的立方和整数解。

  昨天,42也被解决了!Andrew Sutherland和Andrew Booker同时更新他们的主页,报告了42的立方和的整数解:

  这意味着100以内的自然数的立方和的整数解全部找到!

  1000以内还没找到解的整数只剩下:114,165,390,579,627,633,732,906,921 和 975。

  100 以内三立方和的非零解全表

  最后,附上 100 以内三立方和的非零解全表(多种写法选取其中一个):

  1 = (-1)³ + 1³ + 1³

  2 = 7³ + (-5)³ + (-6)³

  3 = 1³ + 1³ + 1³

  4 不可能

  5 不可能

  6 = (-1)³ + (-1)³ + 2³

  7 = 104³ + 32³ + (-105)³

  8 = (-1)³ + 1³ + 2³

  9 = 217³ + (-52)³ + (-216)³

  10 = 1³ + 1³ + 2³

  11 = (-2)³ + (-2)³ + 3³

  12 = 7³ + 10³ + (-11)³

  13 不可能

  14 不可能

  15 = (-1)³ + 2³ + 2³

  16 = (-511)³ + (-1609)³ + 1626³

  17 = 1³ + 2³ + 2³

  18 = (-1)³ + (-2)³ + 3³

  19 = 19³ + (-14)³ + (-16)³

  20 = 1³ + (-2)³ + 3³

  21 = (-11)³ + (-14)³ + 16³

  22 不可能

  23 不可能

  24 = (-2901096694)³ + (-15550555555)³ + 15584139827³

  25 = (-1)³ + (-1)³ + 3³

  26 = 297³ + 161³ + (-312)³

  27 = (-1)³ + 1³ + 3³

  28 = 14³ + 13³ + (-17)³

  29 = 1³ + 1³ + 3³

  30 = (-283059965)³ + (-2218888517)³ + 2220422932³

  31 不可能

  32 不可能

  33 = 8866128975287528³ + (-8778405442862239)³ + (-2736111468807040)³

  34 = (-1)³ + 2³ + 3³

  35 = 14³ + (-8)³ + (-13)³

  36 = 1³ + 2³ + 3³

  37 = 50³ + 37³ + (-56)³

  38 = 1³ + (-3)³ + 4³

  39 = 117367³ + 134476³ + (-159380)³

  40 不可能

  41 不可能

  42 = (-80538738812075974)³ + 80435758145817515³ + 12602123297335631³

  43 = 2³ + 2³ + 3³

  44 = (-5)³ + (-7)³ + 8³

  45 = 2³ + (-3)³ + 4³

  46 = (-2)³ + 3³ + 3³

  47 = 6³ + 7³ + (-8)³

  48 = (-23)³ + (-26)³ + 31³

  49 不可能

  50 不可能

  51 = 602³ + 659³ + (-796)³

  52 = 23961292454³ + 60702901317³ + (-61922712865)³

  53 = (-1)³ + 3³ + 3³

  54 = (-7)³ + (-11)³ + 12³

  55 = 1³ + 3³ + 3³

  56 = (-11)³ + (-21)³ + 22³

  57 = 1³ + (-2)³ + 4³

  58 不可能

  59 不可能

  60 = (-1)³ + (-4)³ + 5³

  61 = 845³ + 668³ + (-966)³

  62 = 3³ + 3³ + 2³

  63 = 7³ + (-4)³ + (-6)³

  64 = (-1)³ + 1³ + 4³

  65 = 91³ + 85³ + (-111)³

  66 = 1³ + 1³ + 4³

  67 不可能

  68 不可能

  69 = 2³ + (-4)³ + 5³

  70 = 11³ + 20³ + (-21)³

  71 = (-1)³ + 2³ + 4³

  72 = 7³ + 9³ + (-10)³

  73 = 1³ + 2³ + 4³

  74 = (-284650292555885)³ + (66229832190556)³ + (283450105697727)³

  75 = 4381159³ + 435203083³ + (-435203231)³

  76 不可能

  77 不可能

  78 = 26³ + 53³ + (-55)³

  79 = (-19)³ + (-33)³ + 35³

  80 = 69241³ + 103532³ + (-112969)³

  81 = 10³ + 17³ + (-18)³

  82 = (-11)³ + (-11)³ + 14³

  83 = (-2)³ + 3³ + 4³

  84 = (-8241191)³ + (-41531726)³ + 41639611³

  85 不可能

  86 不可能

  87 = (-1972)³ + (-4126)³ + 4271³

  88 = 3³ + (-4)³ + 5³

  89 = 6³ + 6³ + (-7)³

  90 = (-1)³ + 3³ + 4³

  91 = 364³ + 192³ + (-381)³

  92 = 1³ + 3³ + 4³

  93 = (-5)³ + (-5)³ + 7³

  94 不可能

  95 不可能

  96 = 10853³ + 13139³ + (-15250)³

  97 = (-1)³ + (-3)³ + 5³

  98 = 14³ + 9³ + (-15)³

  99 = 2³ + 3³ + 4³

  100 = 7³ + (-3)³ + (-6)³

自定义HTML内容